Descriptive Statistics - count & sum
F. Count() - counts the non-NA entries for each row and column. Values None, Nat, NaN are considered as NA in pandas. Example:- 1. import pandas as pd df2 = pd.DataFrame({2016:{'q1':500,'q2':500,'q3':47000,'q4':49000},2017:{'q1':'A','q2':'A','q3':'A','q4':'D'},2018:{'q1':54500,'q2':51000},2019:{'q1':True,'q2':'False'}}) print(df2.count()) Output:- 2016 4 2017 4 2018 2 2019 2 2. import pandas as pd df2 = pd.DataFrame({2016:{'q1':500,'q2':500,'q3':47000,'q4':49000},2017:{'q1':'A','q2':'A','q3':'A','q4':'D'},2018:{'q1':54500,'q2':51000},2019:{'q1':True,'q2':'False'}}) print(df2.count(numeric_only=True)) Output:- 2016 4 2018 2 G. Sum() - Returns the sum of the values for...